
Providing Different Levels of
QoS

UMOBILE PROJECT REVIEW
BRUSSELS, 20 OCTOBER 2016

1

Objective of Task 4.1

▸ The aim of Task 4.1 of WP4 is to abstract away network
impairments from the user’s view (as much as possible).

▸ To develop the mechanisms providing different levels of
QoS: less-than-best effort, best effort and guaranteed.

▸ In our view and to simplify the problem, the issue can be
tackled at different levels of the software stack

2

UMOBILE QoS Model 3

R1

R2R3

R4

Network	Provider

HS2 HS3HS1

Service	Producer SC
(Bob)

SC
(Dan)sa sb sc

Legend:	
HS-hosting	server
sa,	sb,	sc- services	(applications)	with	different	QoS requirements.
Ri- routers		SC- service	consumer

‣ There are different business models for service provisioning.
‣ We assume a business model with four stakeholders:

‣ Service Producer (SP)
‣ Service Distributor (SD)
‣ Internet Service Provider (ISP)
‣ Service Consumer (SC)

‣ This is one of the simplest but realistic
models.

‣ The network provider is responsible
for and in full control of the QoS
delivered by the services.

‣ He/she can deploy QoS mechanisms
as needed.

‣ Commercial network providers also
apply this model for VoD service

Why we choose this model?

Relevant QoS Parameters in UMOBILE

▸ Potential QoS parameters are:

▸ Latency

▸ Availability

▸ Throughput

▸ Time to repair (service recovery), etc.

▸ We are focused (for the time being) on latency and
availability, It seems to be universally relevant.

4

Classes of Services and QoS Mechanisms 5

R1

R2R3

R4 Alice’s	ISP	
(NDN	net)

HS2 HS3HS1

SC
(Bob)

sa sb sc

server	repo

Server	Producer	(Alice)

application	
level

latency

network	
level

latency

service	controller

▸ Development of application
level QoS mechanisms
▸ Manipulation of the application

and its deployment: mainly service
migration/replication.

▸ Take advantage of ICN abstractions
(for ex. in-network caching, data
replication and multicast).

Multi-layers QoS mechanisms

▸ Development of network level
QoS mechanisms
▸ Manipulation of network packets:

mainly congestion control
▸ Provide opportunistic

communications through DTN
tunnelling

‣ High Priority
‣ Latency: Low, Availability: Guarantee

‣ Best effort
‣ Latency: Conventional, Availability: No Guarantee

‣ Less than best effort (Explicit Delay Tolerance)
‣ Latency: No Guarantee , Availability: Guarantee

Classes of Services

Application level QoS: Service Migration Issues 6

‣ Determine a good place to migrate/replicate the service so that latency is reduced.
‣ Redirect users’ requests to the right replica so that latency is reduced.
‣ Optimise the cost of service migration: Storage, Migration traffic (migrating the

service across the network —> can cause congestion)
‣ We have started with replica placement.

What are the research questions?

Common sense suggests
that to reduce latency the
service should be deployed
close to the end user
(edge computing).

“Close” can be
interpreted as physical
(geographical distance) and
logical (link bandwidth)
proximity.

Internet

UMOBILE	Router

UMOBILE	
AP

UAV

UMOBILE	
Gateway

UMOBILE	Domain
Service	Controller

Service/Content	Provider	

UMOBILE	
Services

UMOBILE	
Services

UMOBILE	
Services

High level design of service migration 7

Decision Engine

ICN-Based
Data

Dissemination

Service
Execution

‣ Decide when and where to migrate/replicate the services
‣ Improve QoS (e.g., access latency, availability)
‣ Minimise the cost of migration/replication (e.g.,

storage, migration traffic)
‣ Provide different classes of QoS (D4.4)

‣ Operating the lightweight services with service
virtualisation
‣ Understanding the scalability issues and performance
‣ Identifying the critical constrains of the system for

deploying services

‣ Name based routing
‣ Decouple the location of producer and consumer
‣ Multicast by name

‣ Service/Content Distribution (Migrate service to the edge)
‣ Benefit from in-network caching of NDN
‣ Push communication model

‣ Service/Network monitoring
‣ Pull communication model

Service Migration: Service Execution 8

▸ Benchmarking scalability[2]

▸ How many containers can be supported by a
specific raspberry Pi ?

▸ How many user requests can be supported
by a single container?

[2] A. Sathiaseelan, A .Lertsinsrubtavee, A. Jagan, P. Baskaran, J. Crowcroft, “Cloudrone: Micro Clouds in the Sky”,
ACM Mobisys Dronet, 2016.

UMOBILE Access Point (SEG)

UMOBILE Innovation
‣ Service is executable (edge computing)
‣ Service/Content is cacheable (edge

caching)
‣ Supporting service migration
‣ Supporting ICN-DTN

Scaling up the number of deployed containers within a PI 9

0 500 1000 1500 2000 2500

0
10

20
30

Number of containers

C
re

at
io

n
tim

e
(s

)

2408 web servers can be
run on a single Raspberry Pi

2.79 s to start up a web server
0 500 1000 1500 2000 2500

0
20

40
60

Number of containers

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)

Available CPU (~70%)

70% CPU usage for
running 2408 containers

0 500 1000 1500 2000 2500

20
40

60
80

10
0

Number of containers

M
em

or
y

us
ag

e
(%

)
100% memory
usage for running
2408 containersThe initial memory usage before creating the first

container was about 98 KB (a PI has 1GB RAM).

‣ Testing with simple web server image (html + a small jpg)
‣ Container size is about 90 KB

Scaling up the number of users accessing a single service

10 50 100 500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (ms)

C
D

F

10 Users
50 Users
100 Users
150 Users
200 Users
250 Users

10 50 100 150 200 250

Number of users

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)
0

20
40

60
80

Available CPU (~70%)

10 50 100 150 200 250

Number of users

Av
er

ag
e

CP
U

lo
ad

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

- Scaling the number of concurrent users from 10 to 250
- 10,000 transactions were set per experiment

- High response time when number of users is large
- The amount of computational work that CPU needs to

process (CPU load) is increased.

CPU load is increased up to 90%

10

Communication Model and Naming Scheme

Operation Model Nature Producer Consumer

Monitoring Pull based Many to One All SEGs Service
Controller

Migrating
Services

Push and
Pull based

One to Many Service
Controller

SEGs

/sm

/service_monitoring/service_migration

/<seg_id>

/push

/<service_name>

/<seg_id>/<service_name>

<root-prefix>

<operation>

Repository

An example of Service Migration scenario

SEG_1 SEG_2

SEG_3 SEG_4

GATEWAY Service
Controller

Service
Provider

WEB

WEB

- Upload service
- Specify QoS

- Monitor service/
network usage

- Make a decision where
to migrate the service

User
Device

- Access the service
through the nearest
SEG with IP connection

NDN connection IP connection

WEB

SEG = Service Execution Gateway

Repository

Service Migration: Decision Engine

SEG

SEG
SEG

SEG

SEG

Service
Controller

SERVICE
SERVICE

SERVICE

Selected node who
operates the service

‣ Decide where/when to migrate
the service

‣ Similar to replica placement
problem in CDN[3]

‣ Satisfy different QoS levels while
minimising the cost (e.g.,
storage, traffic)

[3] Xueyan Tang and Jianliang Xu, "QoS-aware replica placement for content distribution," in IEEE Transactions on Parallel and Distributed Systems, vol. 16, no.
10, pp. 921-932, Oct. 2005.

Decision Engine

ICN-Based
Data

Dissemination

Service
Execution

Status of Service Migration as of Month 18

Decision Engine

ICN-Based
Data

Dissemination

Service
Execution

▸ Implemented the service migration frame work
▸ Network/Service monitoring using pull based communication
▸ Service Virtualisation over NDN (Docker and NDN integration)
▸ Multicast communication through named based routing
▸ Optimising the traffic through in-network caching
▸ Redirect users’ requests to the closet replica over NDN

▸ Identify and measure critical constraints of the system
▸ These parameters include CPU load, Memory, number of

users, storage (from service execution benchmarking)
▸ Identify the QoS requirements
▸ Develop heuristic algorithms for decision engine

‣ Operating the lightweight services with service virtualisation
‣ Understanding the scalability issues and performance

[Done]

[On going]
[On going]

[Done]
[Done]
[Done]

[Done]
[On Going]

[On Going]

[Done]
[Done]

Service Migration
with Push services

DEMO

15

