
NDN-DTN	integration	

Document	title:	Documentation	on	the	code	

Author:	Dimitris	Vardalis	

	

NDN	consists	of:	

1. ndn-cxx	library,	which	provides	infrastructure	facilities	for	the	system,		

2. ndn,	which	includes	the	actual	forwarding	daemon	(NFD)	and	several	related	tools	

	

The	following	contributions	have	been	made	to	realise	the	NDN-DTN	integration:	

• Library	ndn-cxx_umobile	contributions:	

1. Extended	the	FaceURI	class	so	that	it	can	handle	DTN	faces.		

a. Added	a	"dtn"	scheme	that	takes	as	the	endpointPrefix	as	the	host	

(e.g.	dtn-node1)	and	the	endpointAffix	as	the	path	(e.g.	/nfd)	

b. Added	 a	DTNCanonizeProvider	 that	 checks	 if	 a	 certain	 dtn	URI	 is	

canonical.	Currently	all	URIs	are	considered	canonical.	

	

• Daemon	ndn-dtn	contributions:	

1. Added	section	in	the	FaceManager	that	initializes	the	DTN	Face	from	the	nfd.conf	

configuration	file.	The	configuration	allows	for	setting	the	host	and	port	for	the	

ibrdtn	daemon	and	the	endpoint	prefix	and	affix	for	ibrdtn.	

a. Normally	the	ibrdtn	daemon	host	is	the	localhost,	but	a	remote	host	could	

also	be	used	as	a	gateway	

b. The	 endpoind	 id	 of	 the	 local	 dtn	 host	 is	 in	 the	 form	 of	dtn://dtn-

node1/nfd,	 where	 "dtn"	 is	 the	 scheme,	 "dtn-node1"	 is	 the	

endpointPrefix	 and	nfd	 is	 the	endpointAffix.	nfd	 is	 the	dtn	

application	 endpoint	 that	 the	 nfd	daemon	 will	 subscribe	 to	 in	 order	 to	

receive	ndn-related	bundles.	



2. Created	 DtnFactory	 class,	 responsible	 for	 creating	 and	 maintaining	 the	

DtnChannel.	 When	 the	 daemon	 initializes,	 a	 DtnChannel	 is	 created.	

Subsequent	invocations	of	the	createChannel	function	of	the	DtnChannel	

return	the	already	created	channel.	

3. Created	an	AsyncIbrDtnClient	for	asynchronously	connecting	to	the	ibrdtn	

daemon.	The	client	starts	a	new	thread	that	runs	in	the	background	and	is	always	

connected	to	the	dtn	daemon.	When	a	new	bundle	arrives,	the	client	notifies	the	

associated	DtnChannel.	

4. Created	DtnChannel	 that	 receives	and	 sends	data.	DtnChannel	 listens	 for	

incoming	data	and	forwards	them	to	the	daemon	through	the	relevant	face	and	

also	sends	outgoing	data,	again	through	the	relevant	face.	

a. Each	DtnChannel	creates	an	AsyncIbrDtnClient	in	the	"listen"	

function	and	passes	itself	as	a	constructor	argument.	When	a	new	bundle	

arrives	 the	 client	 calls	 the	 relevant	 callback	 at	 the	DtnChannel.	 The	

client	 thread	 remains	on	 for	 the	entire	 lifetime	of	 the	channel	and	gets	

deleted	in	the	channel	destructor.	

b. Handling	of	incoming	bundles	is	queued	in	a	global	daemon	event	queue.	

Instead	of	the	AsyncIbrDtnClient	calling	directly	the	DtnChannel	

callback	 it	 posts	 the	 task	 of	 running	 the	 callback	 with	 the	 appropriate	

arguments	 to	 the	 global	 I/O	 queue	 of	 the	 daemon.	 This	 way	 thread	

synchronization	issues	between	the	bundle	receiving	thread	and	the	core	

nfd	thread	are	avoided.	

c. DtnChannel	differs	from	the	rest	of	the	ndn	channels	in	that	it	receives	

all	 bundles	 for	 all	 faces,	 even	 if	 bundles	 for	 the	 same	 destination	 have	

appeared	 earlier.	 Other	 ndn	 channels	 pass	 connected	 sockets	 to	 the	

relevant	 face,	which	 then	 directly	 receives	 any	 other	 bundles	 that	may	

arrive	at	this	socket,	bypassing	the	DtnChannel.	

d. DtnChannel	creates	faces	similarly	to	the	way	datagram	channels	work.	

The	link	service	used	is	the	GenericLinkService	and	the	transport	is	



a	special	DtnTransport	described	below.	When	the	processBundle	

function	is	invoked	by	the	scheduler,	a	face	is	created	(or	just	retrieved	if	

it	already	exists)	and	the	bundle	is	passed	on	to	the	transport	of	the	face.	

5. Created	DtnTransport	that	inherits	the	Transport	base	class.	The	option	to	

use	the	datagram	transport	template	class	was	ruled	out	because	it	is	too	closely	

tied	 to	 actual	 IP	 sockets,	 whereas	 the	 DtnTransport	 sends	 and	 receives	

bundles	via	the	ibrdtn	client.	

a. Created	a	receiveBundle	function	the	is	invoked	by	the	DtnChannel	

and	accepts	an	incoming	bundle.	The	function	reads	the	payload	from	the	

incoming	bundle,	copies	the	DTN	payload	to	an	NDN	block	element	and	

inserts	 the	 block	 element	 into	 a	 new	 NDN	 Transport::Packet.	

Finally,	the	Transport::receive function	is	called	with	the	newly	

created	transport	packet,	which	propagates	the	packet	into	the	NDN	core	

for	processing.	

b. Implemented	 the	 virtual	 doSend	 function,	 which	 receives	 a	

Transport::Packet,	creates	a	bundle,	and	copies	the	contents	of	the	

packet	 into	 the	 bundle.	 The	 bundle	 destination	 address	 is	 set	 to	 the	

remoteUri	of	the	face	(a	face	is	created	for	each	remote	peer).	Finally,	

the	 ibrdtn	bundle	 is	sent	through	an	 ibrdtn	Client.	The	client	 is	created,	

connected	 to	 the	 ibrdtn	daemon,	 fed	 the	bundle	and	closed	before	 the	

function	 exits.	 Contrary	 to	 the	 AsyncIbrDtnClient,	 which	 is	

constantly	running	in	the	background,	the	Client	created	for	sending	the	

bundle	has	only	local	scope.	


