
Keyword-Based Mobile Application Sharing

Abstract—The advent and wide adoption of smartphones in
the second half of ’00s has completely changed our everyday
mobile computing experience. Tens of applications are being
introduced every day in the application markets. Given the
technology progress and the fact that mobile devices are becoming
strong computing devices, mobile applications are expected to
follow suit and become computation-heavy, bandwidth-hungry
and latency-sensitive.

In this paper, we introduce a new mobile computing paradigm
to alleviate some of the network stress that mobile applications
are already putting into the network, e.g., in case of crowded
areas and events, where the mobile network effectively collapses.
According to this paradigm, users can share the applications that
they have on their mobile devices with nearby users that want
access to processed information, which their own applications
cannot provide. In a sense, then, the client application instance
is also acting as a server instance in order to serve requests
from nearby users. A representative example is a train or route
information application in a busy station, airport, stadium or
festival, or a gaming application onboard a flight. Our paradigm
builds on Information-Centric Networking and uses keyword-
based requests to discover shared applications in the vicinity.

I. INTRODUCTION

Mobile computing is currently led by smartphones and is
largely application-centric. Users increasingly employ appli-
cations to gain access to information e.g., the top-100 appli-
cations in most popular application markets are responsible
for almost 90% of the access time and 80% of the traffic
volume [1]. Through applications, users normally gain access
to processed information e.g., finding a route, searching for
restaurants in an area, getting personalised social networking
or news feeds, etc., instead of only simply asking for static
content. Although mobile devices have gained remarkable
computing capabilities, the required resources for this pro-
cessing are primarily provided by the cloud. Subsequently,
using smart applications and the corresponding cloud-based
service components e.g., Facebook backend, depends on the
availability of Internet access, increasingly stressing the (wire-
less) network infrastructure.

However, access to the cloud is in some cases not nec-
essarily the best option, or not always possible. It is not
uncommon the case where connectivity and access to the
Internet is challenged in overcrowded areas (e.g., airport
lounges, festivals, stadiums, big conference-like events), or
due to equipment failure (e.g., in case of natural disasters),
or complete absence of available connectivity (e.g., onboard
a flight, or in a train while in tunnel), or even due to high
roaming costs. In these cases, the access bandwidth available
to connect WiFi Access Points (APs) or Base Stations (BSs)
to the Internet gets swallowed up very quickly, leaving users
connected to the local AP, but with no or limited access further
out. Naive approaches to deal with the above situations might
suggest the increase of access capacity [2]. It is important to
understand, however, that a very big proportion of the services

that users are interested in during such events do not actually
require access to the global network, but are rather targeting
non-personalised services/content related to the local event
itself. For instance, while in a festival, users are more likely to
be interested in finding information on local restaurants, train
times or local maps, rather than requiring VPN connection to
their work email. Although the situation can be quite different
in a conference-style, business-oriented event, we argue that
the demand for local services is far from negligible [3]. In
all cases, from a resource management point of view, dealing
with demand for local services/content locally, increases the
availability of Internet resources to those who do require access
to remote content/services.

To this end, several solutions have been proposed to share
information between mobile devices without using the Internet
infrastructure e.g., OpenGarden1 and FireChat2. A significant
body of work has focused on mobile ad-hoc networks, however
inheriting the drawbacks of the underlying host-centric IP
paradigm i.e., location-identity coupling. Taking a data-centric
approach, Haggle [4] first proposed a data-centric network
that enabled seamless network connectivity and application
functionality in dynamic mobile environments, separating ap-
plication logic from transport bindings so that applications
can be communication-agnostic. Trying to overcome IP lim-
itations, other proposals focused on the Information-Centric
Networking (ICN) paradigm e.g., [5]. In [6], the authors
propose Krowd to enable content sharing between users in
crowded live events by realising a key-value store abstraction
for applications.

Other approaches have been based on Delay-Tolerant Net-
works (DTN), exploiting both its inherent capability to ex-
change data in opportunistic environments, and its in-network
storage functionality. For instance, a DTN-based content stor-
age and retrieval platform is proposed in [7], enabling applica-
tions to make caching and forwarding decisions. In [8] maps of
disaster areas are generated and shared over a distributed DTN-
based computing system. ShareBox3 enables the exchange of
files over an opportunistic network. Similarly, the Floating
Content [9] concept leverages ad-hoc communications among
mobile users to share local information. According to Floating
Content, message and information replication is limited in time
and space. The proposed solutions so far aim at either enabling
IP-based connectivity in mobile environments, or supporting
the generic, application-agnostic exchange of content and
computations often employing ICN primitives e.g., name-based
routing and forwarding [10]. Named Function Networking
(NFN) [11] extends the resolution-by-name ICN primitives
providing in-network data computations, but without enabling
application sharing in mobile environments.

1http://opengarden.com
2http://opengarden.com/firechat
3https://play.google.com/store/apps/details?id=de.tubs.ibr.dtn.sharebox

http://opengarden.com
http://opengarden.com/firechat

Fig. 1. KEBAPP-enabled host

In this article, we take a step further from content sharing
and host-centric communications, focusing and building on
the prevailing application-centric computation and communi-
cation model i.e., explicitly enabling access to the desired
processed information through the concept of application
sharing. Namely, we leverage application-centrism to facil-
itate information discovery through application-driven and
application-defined, hierarchical namespaces. Given the ad-hoc
nature of the proposed computation framework, our approach
further extends these namespaces by introducing the concept of
keywords i.e., free-text or application-driven (GUI) parameters
used to enable the invocation of applications at co-located
mobile devices. This enables the description, discovery and
retrieval of processed information, further supporting variable
accuracy results, instead of only exact matches e.g., a search
result that does not contain all search terms. Note that the
invocation of remote processing (in co-located smartphone or
WiFi AP devices) is central to our framework, as opposed to
previous work on retrieving static content from nearby devices.
Our keyword-based mobile application sharing framework
(KEBAPP), manages connectivity in an application-centric way
i.e., coupling connectivity options/opportunities to applications
and their namespaces. KEBAPP extends existing ICN primi-
tives, namely CCN/NDN, thus resulting in a generic solution
across different applications and overcoming the pitfalls of IP.

II. THE KEBAPP FRAMEWORK

In this paper, we present KEBAPP, a new application-
centric information sharing framework oriented to support and
provide opportunistic computing to mobile devices (smart-
phones, tablets, etc.). Our approach targets scenarios where
large numbers of mobile devices are co-located presenting
the opportunity for localised collective information exchange,
decoupled from Internet-access. In this context, KEBAPP em-
ploys application-centrism to facilitate/enable (i) the exchange
of processed information, in contrast to merely static content,
and (ii) the discovery and delivery of information partially
matching user interests.

Figure 1, presents the structure of a KEBAPP-enabled
host. KEBAPP provides a new layer between the application
and the link layers exhibiting three major design features.
Namely, (i) application-centric naming, where applications

share common name-spaces and further support the use of a
keywords (Section II-A), (ii) application-centric connectivity
management (KEBAPP WiFi Manager), where applications
manage connectivity by defining and/or joining WiFi broadcast
domains (Section II-B), and (iii) information-centric forward-
ing, extending CCN/NDN primitives (Section II-C).

A. Naming

The discovery and invocation of services/applications in the
networking vicinity of a user builds on a naming scheme that
enables the fine-grained description of the desired processed
information. To this end, KEBAPP builds on the observation
that mobile computing is largely application-centric, in the
sense that users tend to access information using purpose-
built applications. Application-centricity presents a series of
important characteristics:

• Applications inherently support the structuring of the
namespace within their semantic context. In turn,
instances of the same (or similar) application can
share the same namespace in describing the related
information e.g., categories in a news application.

• Applications are inherently used for computa-
tion, enabling the (lightweight) processing of con-
tent/information e.g., searching, sorting data or com-
puting a route.

Hierarchical
Part︷ ︸︸ ︷

/a/b/c/︸ ︷︷ ︸
App Market
App Developer

⊕
Hash Tags︷ ︸︸ ︷

#tag1, #tag2︸ ︷︷ ︸
App Developer

Fig. 2. Keyword-based Names

Taking these features into account, KEBAPP names are
composed of two main parts (see Figure 2):

Fixed Hierarchical Part. It follows the hierarchical nam-
ing scheme of CCN/NDN and its purpose is to guaran-
tee compatibility between instances of the same or dif-
ferent services/applications. Application developers can de-
fine their own hierarchical namespaces, enabling communi-
cation between different instances of the application e.g.,
/NewsApp/politics/international.

Moreover, application developers can also define
suffixes corresponding to specific functionalities within
their applications (in addition to static content), enabling
this way the sharing of computation e.g., the name
/MyTravelAdvisor/Top10Restaurants is used
to identify the list of the top-10 restaurants in a certain area.

According to our initial design the hierarchical part of
the name will have to be an exact (longest prefix) match in
order for a request to be served. It is noted though, that this
matching is performed by the KEBAPP layer, with the user
simply interacting with the application GUI i.e., users need
not be aware of the exact naming conventions.

Hashtags. The second part of the name comprises of hashtag-
like free keywords, which the application developer can add to
the application. The exact semantics of the hashtags depend on

BSSID3
/MyNewsApp

BSSID1
/RouteFinder

BSSID2
/MyTravelAdvisor

(a) AP-assisted scenario

BSSID1

BSSID2

BSSID3
/MyNewsApp

/RouteFinder

/MyTravelAdvisor

(b) WiFi Direct scenario

Fig. 3. Connectivity Options

whether the fixed hierarchical part of the name corresponds to
static content or an application function(ality). In the former
case, these keywords are used to semantically annotate the
static content. This feature enables the partial matching of
requests with available cache or routing/forwarding entries i.e.,
given an exact match in the fixed hierarchical part of the name,
hashtags can be used to support approximate matching, in turn
enabling the search of information in nearby devices.

When the fixed part of the name identifies a certain appli-
cation function(ality), the hashtag part of the name enables
the passing of adequate parameters. In the aforementioned
example of the MyTravelAdvisor application, the complete
name included in a user request can have the fixed hierarchical
part /MyTravelAdvisor/Top10Restaurants and the
hashtags #userrating, #London, #indian indicating
that the user is interested in the top-10 of the indian restaurants
in London, according to users ratings. The submission of
hashtag values is guided by the application GUI and can
include both predefined value ranges e.g., the sorting cri-
teria for the top-10 restaurants, and free text fields e.g., a
user requests /MyNewsApp/politics/search #Syria
#negotiations to use the search function of MyNewsApp
and find anything related to negotiations for Syria.

B. Connectivity Management

Connectivity management plays a vital role in KEBAPP. In
this work we focus on WiFi-enabled (IEEE 802.11) connec-
tivity. This also includes WiFi Direct, which enables mobile
devices to act as APs by forming communication groups.
In KEBAPP, we propose the creation and use of 802.11
broadcast domains for the support of particular applications
i.e., KEBAPP-enabled hosts or APs advertise one or more
Basic Service Set(s) (BSSs) for the support of one or more
application(s). The creation of application-specific BSSs aims

at enabling mobile devices to connect only when their counter-
parts support the same application and/or namespace. Within
a BSS, hosts communicate employing CCN/NDN primitives,
as described in Section II-C.

The advertising AP or host, through a WiFi Direct Group,
acts as a mediator to connect different users willing to share
the same application in a single broadcast domain. In the case
of APs, functionalities such as access control, association, en-
cryption, etc., can be supported without imposing computation
and/or battery overheads to mobile devices. Note however,
that APs in this case need not provide access to the Internet.
Figure 3a represents an AP-assisted scenario where different
users share different applications.

The creation of an application-specific BSS requires the
ability of mobile devices to identify the mapping between
the BSS and the corresponding application. The recently
announced WiFi Neighbour Awareness Networking (NAN)
protocol [12] can support this requirement. Namely, WiFi NAN
supports a low energy consumption device discovery mecha-
nism enhanced with publish/subscribe primitives that can serve
to retrieve what application is available in a certain BSS.
Other technical approaches are also possible e.g., employing
the Access Network Query Protocol (ANQP) of IEEE 802.11u
or using pre-defined SSIDs. It is noted that a device can be
connected to more than one BSSs at the same time (e.g.,
[13]), thus acquiring or providing information across several
applications (Figure 3b).

C. Forwarding Operation

The basic forwarding operation of a KEBAPP node is a
modified version of Named Data Networking (NDN) archi-
tecture [14]. The KEBAPP modifications aim at reflecting the
forwarding of messages within the various BSSs a node may
participate. As explained in the following, since we consider

single-hop broadcasting domains, forwarding decisions lead to
either the broadcasting of a message in the BSS or its delivery
to a local application instance. As such, broadcast domains are
considered as (inter)faces of a KEBAPP node.4

The KEBAPP forwarding scheme, similarly to NDN/CCN,
has three main data structures: FIB (Forwarding Information
Base), CS (Content Store) and PIT (Pending Interest Table).
The FIB is used to forward Interest packets toward potential
sources of matching data. The WiFi manager (see Figure 1)
populates the FIB table with the name prefixes (hierarchical
part of the name scheme detailed in Section II-A) advertised by
the wireless networks in the vicinity e.g., through WiFi NAN.
As in NDN, a FIB table entry comprises the name prefix and
a list of output face(s). In KEBAPP, the latter list (of output
faces) includes the Basic Service Set IDentifiers (BSSIDs)
advertised by other nodes. Moreover, when a KEBAPP node
acts as information producer, providing information to other
nodes, the output face list is further augmented with the
Internal_Face, which enables a node to forward an Inter-
est message to the local instance of the application.

The second main data structure, the CS, is responsible of
caching the information requested by the users, providing fast
fetching for popular information and avoiding to recompute
information already requested by other users. Replacement
policies of the CS is out of the scope of this paper.

Finally, the third data structure of a KEBAPP-enabled
node, the PIT, keeps track of Interests forwarded to any BSS.
KEBAPP keeps a PIT entry for every application request.
Depending on whether an Interest message comes from the
local application instance or another node in the corresponding
BSS, the Requesting Faces list contains a handle to the
local application instance (i.e., the Internal_Face) or the
BSSID of the corresponding BSS. In order to support delay
tolerant communications, KEBAPP extends NDN’s function-
ality, by allowing the creation of PIT entries even when no
suitable destination i.e., forwarding entry, has been found for
the Interest message. At the same time, a PIT entry is extended
to further indicate the Destination Face i.e., the BSSID, it has
been broadcast to or the corresponding Internal_Face.
This serves the purpose of (re-)issuing Interest messages upon
the discovery of a BSS that is associated with a matching name
(in the FIB).

Figure 4 provides a representation of the KEBAPP packet
forwarding engine.

In the following, we detail the operation of KEBAPP
framework for an information requester:

1) The application requesting for information creates a
new Interest.

2) The application looks for the information in the local
CS. If the information exists locally, the data is sent
to the application.

3) If the information is not found in the CS,
the KEBAPP layer inserts an entry in the
PIT (<Internal_Face, name_prefix +
keyword_list, null>). As in NDN, we use
the term “Internal Face” to point to the local

4We focus on the KEBAPP functionality; details relating to the coexistence
of KEBAPP with original NDN are out of the scope of this paper.

Fig. 4. Forwarding operations

application involved in the transaction (either as
requester or as provider).

4) The KEBAPP (network) layer checks if there
is a BSSID entry in the FIB matching the
name_prefix of the PIT.5 If an entry for the
requested name prefix exists, the WiFi manager con-
nects the WiFi interface to the BSSID in the FIB and
broadcasts the Interest message with a corresponding
time-out value.

5) Each time a new FIB entry is added because a new
prefix name is discovered on a new BSS (e.g., through
WiFi NAN), the KEBAPP layer checks if a pending
PIT entry for this prefix exists. As mentioned above,
this corresponds to PIT entries created for Interest
messages that could not be forwarded. In case an
entry exists, the Interest is sent through the recently
added BSSID, and the entry is updated with the
BSSID value.

6) When a response is received with the information re-
quested, the KEBAPP layer looks for the internal face
that points to the application in the corresponding PIT
entry and fordwards the response to it. The PIT entry
is removed and the information requested is cached
in the CS.

Next, we describe the operation of the KEBAPP framework
for an information provider:

1) The user receives an Interest through the interface
connected to a certain BSS related to an application.

2) The KEBAPP layer checks the CS for a matching
entry.

3) In case there is no entry in the CS matching the
Interest, a PIT entry is first created. This entry allows
the provider device to serve multiple, concurrently
arriving, identical requests with a single message i.e.,
applying multicast, as in original CCN/NDN. In this
case, the Requesting Face list of the entry includes the
BSSID of the current BSS. Subsequently, the FIB ta-
ble is looked up and the Internal_Face is used to
forward the Interest message to the corresponding ap-
plication. For completeness, the Internal_Face
is also added to the PIT entry as an output face.

4) The response from the application is cached in the
CS and sent back to the broadcast domain indicated

5Note that a local “Internal Face” will never be used since this is a local
request.

by the BSSID value of the local PIT entry, which is
subsequently removed.

III. USE CASE: ROUTEFINDER APP

When realising a RouteFinder application, the KEBAPP
framework will have to deal with one of the two following
cases. The first case is when some other device (either a client
device or an AP) has previously setup a BSS, using WiFi in
the case of an AP, or a WiFi Direct group in the case of a client
device, advertising the corresponding application. The second
case, is when no other BSS advertising the service required can
be detected in the vicinity. In this second case, the user sets
up a new BSS with the service required and waits for other
users willing to connect to the BSS to share the requested
application/service.

Let’s assume user Alice is a tourist that just arrived in Lon-
don by train. When she arrives at the train station, she wants to
use her RouteFinder application to calculate the route to arrive
at the hotel. However, Alice does not have Internet connection
available because she does not want to pay expensive roaming
data plans. In the station, there is an AP advertising the fixed
hierarchical part of the name of the RouteFinder application
Alice is running. To advertise the service name, the AP
uses the WiFi NAN protocol. The RouteFinder application
detects no Internet connection is available, but the BSS of
the AP is advertising the service. The RouteFinder decides
to connect to the BSS. Once connected, the RouteFinder
application sends a request including their keyword pref-
erences to the BSS. The user request should be like the
following, /RouteFinder/search #LondonStation
#LondonHotel #Underground #Bus, where the fixed
hierarchical part of the name describes the service and the first
hashtags are the origin and the destination of the route. The
hashtags #Underground and #Bus are optional and define
the route preferences.

User Bob, is a local passenger waiting for his train in
the station, and he is running the RouteFinder application
on the background in his mobile device. Bob is willing to
share the RouteFinder service with other users. Since he has
unlimited local data plan, he can run the service and calculate
routes for other users. The application connects to the BSS
and receives the request sent by Alice. Based on the keywords
provided by the user, Bob’s device executes the application and
returns the result to Alice. Alice receives the calculated route
on her handheld device transparently, without having Internet
connection i.e., without having to look for any public hotspot
Internet connection or pay for expensive roaming data plans.

KEBAPP computations consume battery resources and
possibly data resources of devices, as requests from neighbour
nodes/users arrive. Therefore, an incentive system would likely
motivate users to share their applications and their device
resources, accordingly. A variety of existing approaches can
be exploited to incentivise users to share their applications.
For instance, in [15], the authors propose some form of
micropayment system where users get a reward for every
service they provide to their neighbours. Though it is out of
the scope of this paper to explore incentives systems, we still
note that embracing the application-centric model of current
mobile computing is expected to facilitate such schemes.

Mobile applications and the corresponding on-line services
typically keep track of user behaviour through user accounts
e.g., to improve user experience or provide personalised ser-
vices/advertisements. Though KEBAPP focuses on scenarios
of limited Internet access, still, we envision a complementary
role of both on-line and off-line application components to
support such incentives schemes e.g., keeping track of off-line
user application sharing activity/contribution so as to support
micro-payment schemes.

IV. PRELIMINARY RESULTS

A. Evaluation framework

For the evaluation of the proposed framework, we consider
a KEBAPP-enabled tube map application that provides infor-
mation on train lines and their respective schedule, as well
as real-time information regarding delays, closed stations etc.
We assume that a significant percentage of users commuting
by tube have installed at least one such app on their smart-
phone. In particular, we consider a common scenario where a
commuter wants to know if there are any delays on the lines
that he/she needs to take in order to reach his/her destination,
as well as the estimated time of arrival to the destination.
By exploiting the proposed shared application framework, a
KEBAPP user can take advantage of different applications
(within the same context) shared by other users that have
recently entered the tube station. In particular, by using as input
simple information such as current location and destination of a
user, the devices of nearby users compute the estimated arrival
time, along with the route that the user needs to follow, and
send a reply back to the user.

To evaluate the proposed application, we perform simu-
lations based on mobility traces, from a subway station in
downtown Stockholm6.

For different numbers of KEBAPP users (which reflect the
KEBAPP-enabled application penetration rate), we examine
to what extent route calculation requests are successfully re-
sponded by other user applications. In particular, we randomly
select a subset of the trace nodes, as the KEBAPP users,
and randomly generate route calculation requests during their
short stay in the station. We assume that a request can be
successfully responded by only a small percentage (1, 5, or
10%) of the other KEBAPP users, which are also selected
in random; this percentage corresponds to the users that have
enabled the sharing capabilities of their KEBAPP application,
and have access to the requested data, as well as sufficient
battery level. We should also note that each commuter visits
the tube station for a short period of time (i.e., with an average
stay of around three minutes), so the probability that two users
that run a KEBAPP application do not exist in the subway
station simultaneously is high.

All sets of simulations are repeated 1000 times. We mea-
sure the successful responses of route calculation requests,
in terms of probability and response time. In particular, we
measure: i) the average Response Ratio (RR), i.e., the fraction
of the total generated requests that receive a successful reply,
and ii) the average First Response Time (FRT), which is
the average time between each request issue and the first

6Trace was obtained from http://crawdad.org/kth/walkers/20140505/

reply, for those that are successfully responded. Note that in
this preliminary experiment, we do not consider computation
processing time and protocol-specific delays, as we do not
focus on protocol implementation-details.

B. Evaluation results

Our evaluation results show that, as expected, the response
ratio increases with the KEBAPP-enabled application penetra-
tion rate, as well as the percentage of the sharing users. In
particular, even with a small penetration rate, (when only 100
out of the 3300 commuters are KEBAPP users), the KEBAPP
users have a chance to get a successful response. As shown in
Figure 5, the lowest response ratio of 9% is achieved when
only one other passenger (during the simulation period of
one hour) can successfully respond to the user request. The
probability of a successful response gets significantly higher
when more users are willing to share their resources; this
probability is increased by a factor of 6.5 (from 9% with only
one user sharing resources to 58.8% with ten users sharing
resources out of 100 KEBAPP users). As the number of users
increases, the response ratio approaches 100%.

As far as average response time is concerned, we notice
that response time decreases as the number of users that are
sharing resources increases, since the user that issues a request
is more likely to encounter such a user. In particular, the
maximum average delay is observed at the lowest sharing
ratio of 1%, and it spans from 17-29 seconds. For increased
information availability, a user request can almost immediately
find a match, within a few seconds.

1 0 0 5 0 0 1 0 0 0
0

2 0

4 0

6 0

8 0

1 0 0

 R R 1 % s h a r i n g
 R R 5 % s h a r i n g
 R R 1 0 % s h a r i n g
 F R T 1 %
 F R T 5 %
 F R T 1 0 %

N u m b e r o f K E B A P P u s e r s

Av
era

ge
 Re

sp
on

se
 Ra

tio
 (%

)

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Average First Response Time (s)

Fig. 5. Evaluation results

V. CONCLUSIONS

We have introduced the concept of Keyword-Based Mobile
Application Sharing (KEBAPP), according to which mobile
clients can make use of applications in nearby devices, i.e.,
not necessarily only in their own mobile device. This requires
applications installed in mobile devices to also act as servers,
apart from their normal role as clients. KEBAPP builds on ICN
principles and forms requests based on keywords and hashtags
in order to invoke computation in nearby devices. As a last

step, processed information is returned back to the requesting
client.

Our proof-of-concept simulation results, built on a trace of
commuters in Stockholm metro network, shows that even a tiny
number of KEBAPP-enabled users can provide a significant
service coverage to nearby users. With this study we attempt to
start a new thread in the information-centric mobile computing
area and trigger further research from both implementation and
evaluation perspectives.

REFERENCES

[1] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,
“Identifying diverse usage behaviors of smartphone apps,” in Proceed-
ings of the 2011 ACM SIGCOMM Conference on Internet Measurement
Conference, IMC ’11, (New York, NY, USA), pp. 329–344, ACM, 2011.

[2] A. Valcarce, T. Rasheed, K. Gomez, S. Kandeepan, L. Reynaud,
R. Hermenier, A. Munari, M. Mohorcic, M. Smolnikar, and I. Bu-
caille, “Airborne base stations for emergency and temporary events,” in
Personal Satellite Services (R. Dhaou, A.-L. Beylot, M.-J. Montpetit,
D. Lucani, and L. Mucchi, eds.), vol. 123 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 13–25, Springer International Publishing, 2013.

[3] I. Wakeman, S. Naicken, J. Rimmer, D. Chalmers, and C. Fisher, “The
fans united will always be connected: building a practical dtn in a
football stadium,” in ADHOCNETS 2013, 5th International Conference
on Ad Hoc Networks, (Barcelona, Spain), October 2013.

[4] J. Scott, P. Hui, J. Crowcroft, and C. Diot, “Haggle: A networking
architecture designed around mobile users,” in Proceedings of the Third
Annual IFIP Conference on Wireless On-Demand Network Systems and
Services (WONS 2006), IEEE, January 2006.

[5] C. Anastasiades, T. Braun, and V. Siris, “Information-centric networking
in mobile and opportunistic networks,” in Wireless Networking for
Moving Objects (I. Ganchev, M. Curado, and A. Kassler, eds.), vol. 8611
of Lecture Notes in Computer Science, pp. 14–30, Springer International
Publishing, 2014.

[6] U. Drolia, N. Mickulicz, R. Gandhi, and P. Narasimhan, “Krowd: A
key-value store for crowded venues,” in Proceedings of the 10th Inter-
national Workshop on Mobility in the Evolving Internet Architecture,
MobiArch ’15, (New York, NY, USA), pp. 20–25, ACM, 2015.

[7] J. Ott and M. J. Pitkanen, “Dtn-based content storage and retrieval,” in
World of Wireless, Mobile and Multimedia Networks, 2007. WoWMoM
2007. IEEE International Symposium on a, pp. 1–7, June 2007.

[8] E. Trono, Y. Arakawa, M. Tamai, and K. Yasumoto, “Dtn mapex:
Disaster area mapping through distributed computing over a delay
tolerant network,” in Mobile Computing and Ubiquitous Networking
(ICMU), 2015 Eighth International Conference on, pp. 179–184, Jan
2015.

[9] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, and J. Kangasharju, “Floating
content: Information sharing in urban areas,” in Pervasive Computing
and Communications (PerCom), 2011 IEEE International Conference
on, pp. 136–146, March 2011.

[10] G. Xylomenos, C. Ververidis, V. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. Katsaros, and G. Polyzos, “A survey of information-
centric networking research,” Communications Surveys Tutorials, IEEE,
vol. 16, pp. 1024–1049, Second 2014.

[11] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in
Proceedings of the 1st International Conference on Information-centric
Networking, ICN ’14, (New York, NY, USA), pp. 137–146, ACM, 2014.

[12] D. Camps-Mur, E. Garcia-Villegas, E. Lopez-Aguilera, P. Loureiro,
P. Lambert, and A. Raissinia, “Enabling always on service discovery:
Wifi neighbor awareness networking,” Wireless Communications, IEEE,
vol. 22, pp. 118–125, April 2015.

[13] A. J. Nicholson, S. Wolchok, and B. D. Noble, “Juggler: Virtual
Networks for Fun and Profit,” IEEE Transactions on Mobile Computing,
vol. 9, pp. 31–43, Jan. 2010.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’09, (New York, NY, USA), pp. 1–12, ACM,
2009.

[15] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, and
L. Tassiulas, “Bits and coins: Supporting collaborative consumption
of mobile internet,” in Computer Communications (INFOCOM), 2015
IEEE Conference on, pp. 2146–2154, April 2015.

	Introduction
	The KEBAPP Framework
	Naming
	Connectivity Management
	Forwarding Operation

	Use Case: RouteFinder App
	Preliminary Results
	Evaluation framework
	Evaluation results

	Conclusions
	References

