
Cloudrone: Micro Clouds in the Sky

Arjuna Sathiaseelan
University of Cambridge
as2330@cam.ac.uk

Adisorn Lertsinsrubtave
University of Cambridge
al773@cam.ac.uk

Adarsh Jagan
National Institute of
Technology, Trichy

Prakash Baskaran
National Institute of
Technology, Trichy

Jon Crowcroft
University of Cambridge
jac22@cam.ac.uk

ABSTRACT
This paper presents Cloudrone- a preliminary idea of deploy-
ing a lightweight micro cloud infrastructure in the sky using
indigenously built low cost drones, single board computers
and lightweight Operating System virtualization technolo-
gies. Our paper lays out the preliminary ideas on such a
system that can be instantaneously deployed on demand.
We describe an initial design of Cloudrone and provide a pre-
liminary evaluation of the proposed system mainly focussed
on the scalability issues of supporting multiple services and
users.

1. INTRODUCTION
Providing access to the Internet has no one size fits all

solution for enabling wider universal access but it requires
exploring a variety of solutions. This is evident from orga-
nizations like Facebook and Google who are on a mission
to connect the next three billion through novel ways by uti-
lizing high altitude platforms such as drones, balloons and
satellites.

Access to services are also extremely important (even po-
tentially life saving) during humanitarian crisis and disaster
scenarios where access to services are challenged - due to
intermittent connectivity, heavy interference and congestion
leading to increased latencies to global servers or in most
cases no access to them. Hence its not rocket science to un-
derstand that access to localized service infrastructures is of
paramount importance to solve the global access problem.

Recent work on mobile edge computing [9] aims to push
computation right at the edge of mobile networks, enabling
computations at the edge improving latencies and perfor-
mance. The recent work on infrastructure mobility [3] illus-
trates the interesting concept of making the access infras-
tructure mobile thus providing better and much more effi-
cient coverage based on the need/demand from the users. So
an obvious question is why cannot we directly provision the
cloud services right nearer to the user on demand even in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DroNet’16, June 26 2016, Singapore, Singapore
© 2016 ACM. ISBN 978-1-4503-4405-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2935620.2935625

the absence of a terrestrial infrastructure e.g. rural/remote
areas or disaster zones?

In this paper, we present Cloudrone- a preliminary idea
of deploying an adhoc lightweight micro cloud infrastruc-
ture in the sky using indigenously built low cost drones,
single board computers and lightweight Operating System
(OS) virtualization technologies such as unikernels/dockers
[6]. Our paper lays out the preliminary ideas on such a
system that can be instantaneously deployed on demand.

2. CLOUDRONE DESIGN
To enable an adhoc lightweight micro cloud infrastruc-

ture in the sky using drones, we bring together a couple of
fascinating recent innovations in computing: single board
computers such as the Raspberry PIs (PI) and lightweight
OS virtualisation technologies such as Dockers1and integrate
them with lightweight quadcopters. There were two pos-
sibilities for us to build the Cloudrone: integrate the PI
with an off the shelf ready made quadcopter or design and
build an entire quadcopter from scratch with the PI pow-
ering both the drone as well as acting as a micro cloud
server. We decide to go for the latter since we wanted to
have the drone as lightweight and low cost as possible. We
used the PI 2 model B equipped with quad-core ARMv7
CPU 900 MHz and 1024 MB RAM memory. It requires
power feed about 800 mA powered using a Lithium Polymer
battery (4200mAh 3S 35C) . The PI runs an ARM version
of Ubuntu 14.04. We used a Edimax WiFi dongle (EW-
7811Un) for providing the WiFi interface. The design and
tuning aspects of our quadcopter can be found on the longer
version of this paper [7].

The quadcopter’s final weight is approximately 1.5 kgs.
The maximum altitude to which it was flown was 50 feet
while flight time is about 15-20 minutes. The quadcopter’s
CPU consumption was also measured during the flight op-
eration by using sysstat tools. On average our quadcopter
consumes 30% for the flight control of the quadcopter leav-
ing 70% for other processes.

2.1 Integrating the micro cloud with the
drone

Our vision to build an adhoc micro cloud infrastructure
in the air is to use a swarm of PIs on drones acting as adhoc
micro cloud servers. The lightweight nature of docker con-
tainers significantly reduce the size of image compared to
the heavyweight virtual machines (VMs) [5]. For instance,

1www.docker.com

41

we can build a minimal static web server with only 2MB
size.

To interconnect the PIs as a swarm/mesh, each of these
devices also act as mobile routers operating in two WiFi
communication modes: one operates in the WiFi ad-hoc
mode to allow Optimised Link State Routing (OLSR) pro-
tocol, constructing a Mobile Ad hoc Network (MANET) [2];
the other operates in the Access Point (AP) mode to allow
user devices to connect with DHCP. The benefit of using
OLSR protocol compared to other MANET routing proto-
cols is it uses a special mechanism called Multi-Point Relay
(MPR) to reduce the number of flooded messages. Only a
few devices that are located in strategically better spatial
positions are chosen to relay (i.e., re-transmit) messages in
the path from a source device to a destination device. The
MPR mechanism helps reduce overall energy consumption.

We use the Docker swarm technology to create a cluster
of multiple docker hosts and migrate the service contain-
ers across the cluster. Specifically, there are two types of
nodes classified in the swarm. 1. Swarm manager - which
manages the overall resources (e.g., swarm members, num-
ber of running containers) and decides where to place the
service containers. 2. Swarm agent - nodes registered with
the swarm manager. When the swarm manager and agents
are created, they have to register with the discovery backend
as members of the swarm. The discovery backend maintains
an up-to-date list of swarm members with the swarm man-
ager. The swarm manager uses this list to assign tasks and
schedule the service containers to the agents. To determine
where to place the new container in the swarm, the swarm
manager uses either spread or bin packing strategy to com-
pute the rank regarding node’s available CPU, RAM and
the number of running containers. With the spread strat-
egy, the swarm manager gives a priority to the node who has
the largest available memory or has the minimum number
of running containers. On the other hand, the bin packing
strategy tries to pack as many containers to a node until
reaching its maximum capacity (e.g., RAM, CPU).

2.2 Deploying the Cloudrone
Cloudrone targets to provide localised adhoc service in-

frastructure in challenged network environments. Such sce-
narios refer to the post-disaster situations and humanitarian
crisis wherein traditional communication services are com-
pletely inoperable. An example of Cloudrone’s deployment
is illustrated in Figure 1. A base camp command center with
backhaul Internet connectivity (e.g., satellite link) is set up
close to the target area. A cluster of drones can form a mesh
network and provide localised services to the users on the
ground via WiFi. A variety of (crucial) services (lightweight
docker containers) can be either pre-loaded onto the PI or
on demand from the ground. The MANET of drones, facil-
itates the swarm manager to communicate and control the
cluster remotely from the base camp through the long haul
link. The swarm manager can update the necessary services
from the Internet and disseminate throughout the cluster.

In some operations, the cluster can be out of contact with
the swarm manager (i.e., the target area is far away from
the command center). To deal with any interruption of ser-
vice, we can create a primary swarm manager operating as
the main point of contact and multiple replicas to be the
backup swarm managers. Using this feature, the replicas
can seamlessly take over the functionalities from the primary

swarm manager when it fails. If the cluster fails to contact
the primary swarm manager, the most powerful replica au-
tomatically takes over the control.

EMERGENCY
SITUATIONS

MIGRANT CRISIS

Users access the services
from the ground.

BASE CAMP COMMAND CENTER

Cloudrone

Wireless Link
Satellite Link connects

to the Internet

Figure 1: An example of Cloudrone’s operation

3. PRELIMINARY BENCHMARKING
The preliminary benchmarking presented in this paper fo-

cusses on understanding the scalability issues of lightweight
OS virtualisation technology such as Docker on a PI. We fo-
cus on two main questions 1) how many Docker containers
can a single PI support? 2) how many user requests can a
single container running on a PI support?

3.1 Scaling up the number of deployed con-
tainers within a PI

To scale up the containers, the docker image could be pre-
pared as small as possible to minimize memory footprint.
Consequently, the memory allocation for kernel to handle
a web server process can be optimized. For this, we use a
nano web server image2 developed in assembly code in which
size is less than 90 KB. To benchmark the capability of a
PI (PI 2), we base our evaluation on memory consumption,
CPU utilisation and the creation time (time taken to create
a container) by using sysstat. In our first attempt, we were
able to spin up only 37 containers, even though the memory
usage and CPU utilisation were only 40% and 18% respec-
tively. We then hacked the Docker daemon, to scale up the
deployed containers to 2408. The procedures that we used
are described in the full paper [7].

The results for our optimised docker are depicted in Fig-
ure 2 where we were able to scale up the number deployed
containers to 2408. Specifically, memory usage is a key fac-
tor that limits the capability of running the containers on
a PI. As shown in Figure 2a, the memory usage increases
gradually when a container is added. The initial memory
usage before creating the first container was about 98 KB
(9.89%). We hit the limit of 2408 containers where there is
no space for available memory.

Figure 2b shows the average utilisation of the quad-core
CPU of the PI. Over the first thousand of deployed con-
tainers, the average CPU usage is very low (about 0.2%)
with a few spikes. However as expected, the CPU usage in-
creases significantly in the high load state (when the number
of containers is larger than 2000). The quadcopter consumes
about 30% of CPU resources. The available space can be
around 70% which is sufficient to provide multiple services

2https://github.com/hypriot/rpi-nano-httpd

42

0 500 1000 1500 2000 2500

20
40

60
80

10
0

Number of containers

M
em

or
y

us
ag

e
(%

)

(a) Memory usage

0 500 1000 1500 2000 2500

0
20

40
60

Number of containers

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)

Available CPU (~70%)

(b) CPU usage

0 500 1000 1500 2000 2500

0
10

20
30

Number of containers

C
re

at
io

n
tim

e
(s

)

(c) Creation time

0 500 1000 1500 2000 2500

0
10

00
20

00
30

00
40

00
50

00
60

00

Number of containers

C
um

ul
at

iv
e

cr
ea

tio
n

tim
e

(s
)

(d) Cumulative creation time

Figure 2: Number of web servers on a single PI

10 50 100 500 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response time (ms)

C
D

F

10 Users
50 Users
100 Users
150 Users
200 Users
250 Users

(a) CDF response time

10 50 100 150 200 250

Number of users

Av
er

ag
e

C
PU

 u
sa

ge
 (%

)
0

20
40

60
80

Available CPU (~70%)

(b) CPU utilization

10 50 100 150 200 250

Number of users

Av
er

ag
e

C
PU

 lo
ad

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(c) CPU load

Figure 3: Stress test with multiple requests

with Docker containers. Hence when the quadcopter is fly-
ing, we will not be able to have 2408 containers running
in parallel. However, a Cloudrone can still support a large
number of concurrent containers.

Figure 2c depicts the results of creation time where each
point denotes the time it took for the nth container to start
up. The creation time is varied from 0.62 s to 38.37 s de-
pending on the current CPU load and memory usage. In
addition, we also plot the cumulative creation time of the
2408 containers (Figure 2d). The PI spent approximately 1
Hr and 50 minutes to spin out 2408 containers. On average
each container requires 2.79 s to start up a web server.

Key takeaway message: A single PI can support significant
amount of concurrent lightweight services.

3.2 Scaling up the number of users accessing
a single service

In order to investigate the feasibility of using lightweight
containers as a platform for the Cloudrone, we aim to eval-
uate the scalability of each of these containers running on
a single PI while serving a large number of requests. We
deploy a minimal static web server using httpd docker base
image using a similar configuration as the experiments in the
previous section. The benchmarking scenario represents the
Cloudrone’s operation where users on the ground can access
the services provided by the Cloudrone through a wireless
interface. Using the Ab - Apache HTTP server benchmark-
ing tool3, we conduct stress tests on the Cloudrone while
scaling the number of concurrent users from 10 to 250. The
total number of requests was set as 10000 transactions per
experiment. For instance, in case of 10 users, 1000 requests

3https://httpd.apache.org/docs/current/programs/ab.html

were sent by each user. The measured RTT via ping tests
with a clear line of sight at 50 feet was between 8ms-10ms.

Figure 3a illustrates the CDF of response time from the
web container running on PI while varying the number of
simultaneous users accessing the service. As shown in the
figure, a single deployed docker container is capable of serv-
ing a large number of concurrent users. As expected, the
average response time increases when the number of con-
current users is scaled up. Figure 3b and 3c plot the CPU
utilisation and CPU load of the PI using sysstat tools. The
CPU utilisation increases almost 20% when the number of
users increase from 10 to 250. This increases the response
time for the processes. Even though the utilization has not
reached the capacity of CPU, processes still run slower as
the CPU load increases. Figure 3c shows the average CPU
load of the PI (sampled in one min intervals). As the arrival
rate of user requests increases, the amount of computational
work need to process also increases. This has impact on the
response of time(Figure 3a).

Key takeaway message: A Docker container running on a
single PI can support significant amount of concurrent users.

4. DISCUSSION
4.1 Scalability Challenges

Our preliminary benchmarking demonstrates that the
PI is capable of functioning as a great micro cloud plat-
form. Our benchmarking was carried out using a lightweight
web server serving a lightweight webpage. It is important
that the scalability of the Cloudrone should also be tested
with heavier web servers serving applications such as Open-
streetmaps. Each application will have different memory
and CPU requirements and hence the number of containers

43

that can be instantiated will vary depending on the type
of applications which directly influences the size of the con-
tainer (e.g., packages, data, library).

Another scalability challenge is to support a larger number
of users within an area. Increasing the number of users
causes an adverse influence on the response time which will
cause service degradation. We envision, the different services
will be provided by a swarm of drones and hence appropriate
load balancing using techniques such as application layer
anycast [10] could be used.

4.2 Service Retrieval
Cloudrones have two main challenges in terms of provid-

ing a reliable service. First, mobility poses a critical chal-
lenge. During mobility, ongoing sessions may break and
sessions need to be reestablished. Second, considering the
distributed nature of the services across a mesh of drones,
identifying the location of the service across a mobile ad-
hoc network is challenging. To solve the latter, techniques
such as Multicast DNS (mDNS) [1] or application layer any-
cast could be used [10]. Another potential way to mitigate
the problem of mobility and service discovery is to explore
new architectures that utilise Information Centric Network-
ing) [4]. ICN architectures such as Named Data Network-
ing (NDN) [4] or SCANDEX [8] decouple the content from
the location thus removing the need for the current end-to-
end client server model such that the service and/or con-
tent can be served directly by any host that currently has
the service/content. ICN thus integrates the provisioning of
content with the locationless notion of information delivery
in ICN allowing different flavours of caching, from on-path
caching to edge caching through a farm of surrogate micro
servers running on the Cloudrones that can be quickly in-
tegrated into the overall (ICN) routing fabric without the
need for DNS redirection or other solutions of the current
Internet. This inherently addresses the issues of mobility
and reliability. As ongoing work, we are in the process of
developing an ICN architecture for Cloudrones via the EU
UMOBILE project 4.

4.3 Deployment Issues
Although Cloudrones demonstrate excellent potential for

deploying localised service infrastructures in areas where ac-
cess to services are crucial but are beyond reach - there are
still major challenges that need to be surmounted.

Drones such as quadcopters have reduced flight times due
to battery life. We envision this situation will change in the
near future with better innovations in battery design and
production or innovations in alternate sources of power e.g.
hydrogen powered drones have flight times upto two hours 5.
Cloudrones also need not be in the air for their entire flight
duration to provide access to its services. We envision that
Cloudrones can be flown to an area and then can provide
it’s localised services from the ground (ideally powered by
an energy source on the ground).

There are tight regulations in flying drones such as quad-
copters. These rules have been laid out by Civil Aviation
Authority (in the case of UK)6. Hence these rules should be
adhered to and in some cases may be restrictive e.g. land
or fly in a congested area. However, we believe, Cloudrone
deployments will fall under the commercial aerial work, and

4http://www.umobile-project.eu/
5http://www.bbc.co.uk/news/technology-35890486
6https://www.caa.co.uk/drones/

hence special permission from the aviation authority will be
required to fly.

5. CONCLUSIONS
This paper presents Cloudrone- a preliminary idea of de-

ploying an adhoc lightweight micro cloud infrastructure in
the sky using indigenously built low cost drones, single board
computers and lightweight Operating System virtualization
technologies. We describe an initial design of the Cloudrone
and provide a preliminary evaluation of the proposed sys-
tem mainly focussed on the scalability issues of supporting
multiple services and users. As part of future work, we plan
to conduct large scale evaluation trials benchmarking the
Cloudrone performance while in the air (in terms of through-
put, latencies and energy) across a wide set of scenarios. We
are also in the process of integrating Docker with NDN and
performance benchmarks will be carried out. Finally, the
current Cloudrone design does not fly autonomously and
hence is strictly limited in terms of distance it can cover
without manual intervention. As part of future work, we
intend to build autonomous flying capabilities.

Acknowledgements
This work was supported by the EU H2020 UMobile project
(Grant agreement no: 645124).

6. REFERENCES
[1] S. Cheshire and M. Krochmal. Multicast DNS.

Internet Engineering Task Force RFC 6762, Feb. 2013.

[2] S. Corson and J. Macker. Mobile ad hoc networking
(MANET): routing protocol performance issues and
evaluation considerations. Internet Engineering Task
Force RFC 2501, Jan. 1999.

[3] M Gowda, N Roy, and R Choudhury. Infrastructure
mobility: A what-if analysis. HotNets-XIII, 2014.

[4] V. Jacobson, D. Smetters, J. Thornton, M. Plass,
N. Briggs, and R. Braynard. Networking named
content. CoNEXT ’09, 2009.

[5] L. Li, T. Tang, and W. Chou. A rest service
framework for fine-grained resource management in
container-based cloud. In IEEE CLOUD, June 2015.

[6] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. SIGPLAN Not., 48(4):461–472, March
2013.

[7] A. Sathiaseelan, A. Lertsinsrubtavee, A. Jagan S,
P. Baskaran, and J. Crowcroft. Cloudrone: Micro
Clouds in the Sky. ArXiv: 1604.08243, April 2016.

[8] A. Sathiaseelan, L. Wang, A. Aucinas, G. Tyson, and
J. Crowcroft. Scandex: Service centric networking for
challenged decentralised networks. In Mobisys
DIYNetworking ’15, 2015.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for vm-based cloudlets in mobile
computing. IEEE Pervasive Computing, 8(4):14–23,
Oct 2009.

[10] E. W. Zegura, M. H. Ammar, Zongming Fei, and
S. Bhattacharjee. Application-layer anycasting: a
server selection architecture and use in a replicated
web service. IEEE/ACM Transactions on Networking,
8(4):455–466, Aug 2000.

44

